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INTRODUCTION 

The application of hydrodynamic theory to the motion of particles, solid and fluid, in viscous 
liquids has received considerable attention in recent years. Important contributions to the 
understanding of the behaviour of single and multi-particle systems have been made which find 
application in many fields of technology from geology and atmospheric physics on the one hand 
to bio-medical engineering on the other. 

The study of the motion of particles and droplets arose from the original work of Stokes 
(1851) who first derived expressions for the terminal settling velocity and the drag coefficient 
for a single spherical solid particle in a viscous fluid. The extensions to account for translation 
of a spherical liquid droplet were litter proposed by Rybczynski (1911), Hadamard (1911) and 
Boussinesq (1913). This early theoretical work has formed the basic framework upon which the 
subject has developed. Many of the important problems associated with the translation of single 
particles, for example, inertia effects and droplet distortion, have been analysed (Taylor & 
Acrivos 1964, Pan & Acrivos 1968 and see also Happel & Brenner 1965). 

Recently some interesting problems associated with translation of liquid droplets have 
arisen which have not previously been considered and which have some import:race in defining 
process conditions in their application. The problems relate to translation and settling of 
encapsulated droplets in viscous liquids and arise in membrane separation processes which are 
now the subject of much research and development work, Li (1971), Li & Asher (1973), Martin 
& Davies (1976). In these processes the overall objective is to selectively extract compound(s) 
from a liquid into a second immiscible liquid. This is accomplished by separating the two 
miscible phases, donor and receptor, by a membrane through which the solids may diffuse. One 
such process uses a liquid membrane phase so that there are three fluid phases; the membrane 
phase hits to be immiscible with the other two. Because it is both impractical to produce stable 
planar membranes and because the overall transfer flux of the solutes depends on the interfacial 
area between the miscible phases and membrane, in some processes the receptor phase is 
dispersed as droplets which are encapsulated by the membrane phase, see figure I. The transfer 
process using this type of membrane is carried out in a spray or diffusion column, an example 
of such a column is shown in figure 2. In this case the droplet is formed at the lower phase I-2 
interface and then rises through the phase 3. In this part of the column transfer across the 
membrane takes place. The performance of the apparatus will depend in part on the rise 
velocity of the droplets and therefore the calculation of drag coefficient and terminal settling 
velocity is important. These cannot be calculated from either Stokes or Hadamard-Rybczynski 
equations since the presence of the membrane phase will influence the flow. 

To analyse this consider the three phase system shown in figure I in which the droplet 
assembly, phase 3 + phase I is assumed spherical and the membrane phase is assumed to be of 
uniform thickness. To distinguish between a droplet of single liquid phase and the present case 
the term globule will be used. 
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Figure I. Membrane ¢ncap,;ulated globule. 
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Figure 2. Liquid membrane diffusion column. 

2. THEORY 

The problem involves the slow motion induced in an incompressible viscous fluid, at rest at 

infinity, by a fluid globule settling at a constant terminal velocity U. The flows considered are 
axisymmetric; therefore the Stokes stream function exists. Three regions can be defined, the 

dispersed phase 3, the membrane phase I and the continuous phase 2. The fluid globule, radius 

a, comprises of a spherical droplet, radius a~ where 0 < e < I, surrounded by a liquid membrane 
of thickness a(l - ~). 

For slow or creeping flow conditions the equations of motion reduce to 

_.I Vp = ~,V~'u [I] 
P 
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and the continuity equation for incompressible fluids may be written as 

V.u = 0 [21 

where u and p are the local fluid velocity and pressure and u and p the kinetic viscosity and 
fluid density respectively. 

The solution expressed in terms of the stream function ~, (i = l, 2, 3) for each flow regime i 
is: 

1 ~ 1 ¢i = sin: O [-~ a,r -~B,r + C,r" +-~ ]. [31 

A, B,, C and D~ (i = I, 2, 3) are determined from the boundary conditions which express the 
continuity of velocity and tangential stresses as well as the vanishing of the normal velocity 
component u, at each interface. The velocity components must remain finite for all values of r, 
in particular at r = 0, and tend to the free stream velocity, U, as r--, 2. Concentration gradients 
of solutes or surfactants in the interface are neglected. 

The frictional force, F= in the z-direction opposing the motion of the fluid globule, r = a, in a 
viscous fluid, viscosity t*." is: 

F.. = - 4~rp..B: [4] 

o r  

where 

A = /7; 2 [y,2 + 6p.~zG(,) + y11(2 + 3y.,~)F(~)] 
- 6rrtt._Ua = 3 [~, .  + 41z],G(~) + 2,.,:(I + g.~..)F(~)J [51 

~,2 =/z,/p,.; Iz~, = P-s/~2 

and 

(I +. ~)(2~" +,(~ +2) 
F(e) = (I - ~)(4~" + 7~ + 4) 

G(e) = 
(I - ~)~(4 + 7~ + 4~ )"  

F(~) and G(~) are monotomicaUy increasing functions in (0, l) and F(0) = IlL G(0) = 1/4; in 
addition F(E) and G ( ~ ) ~  as ~ I. 

In [5] A is the correction factor or dimensionless drag coefficient and is a function of ¢ and 
the dimensionless viscosities P-I/~ and/z3/tL,.. In a gravitational force field A is the correction 
which must be applied to Stokes' law. If U, is the Stokes settling velocity then AU = U, and, 
since from the theory A < 1, a fluid globule should travel with a velocity greater than or equal to 
the Stokes settling velocity, U = U,/A. 

The solution for gravity settling is shown graphically in figure 3. Before examining this some 
conclusions and corollaries may be deduced from the general solution, to the creeping motion 
equations [5]. Thus: 

(a) When ~.t ~' ~: and p., ~. ~3 the situation of an immobile membrane phase is achieved, an 
example may be a polymer membrane, where in this case A --, I and U ~ U,. This would be the 
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Figure 3. Correction factor, ,~, applied to Stokes' law for a single solid particle as a function of radii ratio, 4, 
for various values of p.Jp.., and p.~/~., of order unity. 

anticipated situation since no momentum fiux is transferred to the inner phase 3. The terminal 
settling velocity would then be calculated from Stokes' law using the equivalent density of the 
globule, phase I and phase 3. 

(b) If p.j ~> p., and P.3 "> P.: 

,k 2 (I + 3/~,;F(()) [6] 
-" 3 (I + 2p.nF(())" 

This is the correction factor applicable to a solid particle encapsulated by a membrane. 
(c) Limiting cases can be examined, for example for arbitrary values of ~n and/~3z as ~-* 0 

the correction factor reduces to 

(2 + 3~12) _ '~1 [7] 
'~ "+3(1 +/~n) - 

where A/is the correction factor for the Hadamard solution for a single fluid sphere, viscosity 
/~, in an infinite medium, viscosity/~2. 

(d) For a very thin membrane ~ ~ I, then since 

_ _o--  

the correction factor A approaches unity in agreement with the Stokes correction factor. In 
other words, a liquid droplet encapsulated by a very thin membrane translates with the 
Stokesian velocity of a solid particle not with the velocity of an equivalent fluid droplet. This 
result is at first rather surprising but can be explained by reference to the streamlines induced 
by the flow, figure 4. The presence of the membrane to give a three phase system with the 
attendant interface boundary conditions causes streamline patterns to be established as shown 
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Figt, re 4. Streamline patterns in an encapsulated globule. 

in figure 4. This is a different problem mathematically than that of a single liquid drop but is 
based on the boundary conditions defined on two interfaces at r =  a and r - -ae  and the 
subsequent limit as e--~ I. The direction of the internal calculation streamlines in the inner phase 
3 are reversed compared to that in a single fluid droplet. Near ~ = I, (uoh is in an opposite 
direction to (uo)2 hence in the limit as ~--~ 1 the only possible solution satisfying the velocity 
boundary condition is (us) = 0. Mobility in the membrane causes internal circulation which is 
suppressed as ~--, I. The net result at this condition is that the globule consists of a stationary 
fluid droplet encapsulated by an immobile fluid shell. Thus for very thin membranes the drag 
force coefficient is better represented by Stokes' law than by using the Hadamard correction 
factor for a fluid sphere. 

In practical applications the objective is to use thin membranes, (namely ~ values near 
unity), so that the quantity of the membrane phase I is minimised and, since mass transfer takes 
place by diffusion through the membrane, the mass fluxes are kept high. The implication of this 
analysis on translation has major importance to the mass transfer process. If circulation in the 
inner phase 3 is suppressed as ~-, I then mass transfer into or from the inner phase will be by 
diffusion only. Thus overall mass transfer coefficients will be lower than for liquid droplets 
having similar transport coefficients. 

The graphical solution showing the departure from the Stokes' law correction factor is shown as 
figure 3. A is a function of e and the dimensionless viscosities. Data for two values of ~h/#: are 
shown. All values of A lie between the two limiting conditions discussed, A = I and A = 213. 
Thus the settling velocity for the globule U must be such that UI > U > U, where the subscripts 
refer to the Hadamard single fluid drop and Stokes' single solid particle settling velocities 
respectively. 

Membrane techniques have been applied on small scale to systems where phases 2 and 3 are 
aqueous solutions and phase I an organic hydrocarbon film and to the inverse system, that is 
organic miscible phases 2 and 3 and water membranes. In the first case typical values of/~tl/~, 
are of the order 4 and in the latter case tx~/O,: lies in the range 0 to 1/2. The examples shown in 
figure 3 illustrate these two cases. For this theory to be applicable to these systems the radius of 
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the encapsulated drop must be of the order of 0.5 mm,  a range in which equipment of the type 
shown in figure 2 can operate. 
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